Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Ther Adv Respir Dis ; 16: 17534666221096040, 2022.
Article in English | MEDLINE | ID: covidwho-2309724

ABSTRACT

PURPOSE: We aimed to better understand the pathophysiology of SARS-CoV-2 pneumonia in non-critically ill hospitalized patients secondarily presenting with clinical deterioration and increase in oxygen requirement without any identified worsening factors. METHODS: We consecutively enrolled patients without clinical or biological evidence for superinfection, without left ventricular dysfunction and for whom a pulmonary embolism was discarded by computed tomography (CT) pulmonary angiography. We investigated lung ventilation and perfusion (LVP) by LVP scintigraphy, and, 24 h later, left and right ventricular function by Tc-99m-labeled albumin-gated blood-pool scintigraphy with late (60 mn) tomographic albumin images on the lungs to evaluate lung albumin retention that could indicate microvascular injuries with secondary edema. RESULTS: We included 20 patients with confirmed SARS-CoV-2 pneumonia. All had CT evidence of organizing pneumonia and normal left ventricular ejection fraction. No patient demonstrated preserved ventilation with perfusion defect (mismatch), which may discard a distal lung thrombosis. Patterns of ventilation and perfusion were heterogeneous in seven patients (35%) with healthy lung segments presenting a relative paradoxical hypoperfusion and hypoventilation compared with segments with organizing pneumonia presenting a relative enhancement in perfusion and preserved ventilation. Lung albumin retention in area of organizing pneumonia was observed in 12 patients (60%), indicating microvascular injuries, increase in vessel permeability, and secondary edema. CONCLUSION: In hospitalized non-critically ill patients without evidence of superinfection, pulmonary embolism, or cardiac dysfunction, various types of damage may contribute to clinical deterioration including microvascular injuries and secondary edema, inconsistencies in lung segments vascularization suggesting a dysregulation of the balance in perfusion between segments affected by COVID-19 and others. SUMMARY STATEMENT: Microvascular injuries and dysregulation of the balance in perfusion between segments affected by COVID-19 and others are present in non-critically ill patients without other known aggravating factors. KEY RESULTS: In non-critically ill patients without evidence of superinfection, pulmonary embolism, macroscopic distal thrombosis or cardiac dysfunction, various types of damage may contribute to clinical deterioration including 1/ microvascular injuries and secondary edema, 2/ inconsistencies in lung segments vascularization with hypervascularization of consolidated segments contrasting with hypoperfusion of not affected segments, suggesting a dysregulation of the balance in perfusion between segments affected by COVID-19 and others.


Subject(s)
COVID-19 , Clinical Deterioration , Heart Diseases , Pulmonary Embolism , Superinfection , Albumins , Critical Illness , Edema/diagnostic imaging , Edema/etiology , Humans , Lung/diagnostic imaging , Neovascularization, Pathologic , SARS-CoV-2 , Stroke Volume , Ventricular Function, Left
2.
Angiogenesis ; 26(3): 313-347, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2294482

ABSTRACT

In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.


Subject(s)
COVID-19 , Neoplasms , Female , Humans , SARS-CoV-2 , Neovascularization, Pathologic/drug therapy , Neoplasms/blood supply , Endothelial Cells/pathology , Angiogenesis Inhibitors/pharmacology
3.
J Transl Med ; 21(1): 102, 2023 02 09.
Article in English | MEDLINE | ID: covidwho-2254861

ABSTRACT

BACKGROUND: In the past decades studies on anti-tumoral drugs inhibiting matrix metalloproteinase (MMPs) were disappointing. Recently, we demonstrated that mature endothelial cells (ECs) and endothelial colony forming cells (ECFCs) can switch between invasion modes to cope with challenging environments, performing the "amoeboid angiogenesis" in the absence of proteases activity. METHODS: We first set out to investigate by ELISA if the inhibitors of the main protease family involved in angiogenesis were differently expressed during breast cancer progression. We used Marimastat, a broad-spectrum MMP inhibitor, as a means of inducing amoeboid characteristics and studied VEGF role in amoeboid angiogenesis. Thus, we performed invasion and capillary morphogenesis assay, morphological, cell signaling and in vivo mouse studies. RESULTS: Our data showed that TIMP1, TIMP2, alpha2-antiplasmin, PAI-1 and cystatin increase in breast cancer serum of patients with primary cancer and lymph node positive compared to healthy women. In vitro results revealed that the most high-powered protease inhibitors able to induce amoeboid invasion of ECFCs were TIMP1, 2 and 3. Surprisingly, Marimastat promotes ECFC invasion and tubular formation in vitro and in vivo, inducing amoeboid characteristics. We observed that the combination of Marimastat plus VEGF doesn't boost neither cell invasion nor vessel formation capacity. Moreover, inhibition of VEGF activity with Bevacizumab in the presence of Marimastat confirmed that amoeboid angiogenesis is independent from the stimulus of the main vascular growth factor, VEGF. CONCLUSIONS: We underline the importance to consider the amoeboid mechanism of endothelial and cancer cell invasion, probably responsible for the failure of synthetic metalloproteinase inhibitors as cancer therapy and tumor resistance to VEGF-targeted therapies, to set-up new drugs to be used in cancer therapy.


Subject(s)
Amoeba , Neoplasms , Animals , Female , Mice , Amoeba/metabolism , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Endothelial Cells/metabolism , Matrix Metalloproteinases/metabolism , Morphogenesis , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , MAP Kinase Signaling System
4.
Med J Malaysia ; 78(2): 155-162, 2023 03.
Article in English | MEDLINE | ID: covidwho-2283466

ABSTRACT

INTRODUCTION: The co-existence of coronavirus disease 2019 (COVID-19) and pulmonary thromboembolic (PTE) disease poses a great clinical challenge. To date, few researches have addressed this important clinical issue among the South-East Asian populations. The objectives of this study were as follow: (1) to describe the clinical characteristics and computed tomographical (CT) features of patients with PTE disease associated with COVID-19 infection and (2) to compare these parameters with those COVID-19 patients without PTE disease. MATERIALS AND METHODS: This cross-sectional study with retrospective record review was conducted in Hospital Tengku Ampuan Rahimah, Selangor, Malaysia. We included all hospitalised patients with confirmed COVID-19 infection who had undergone CT pulmonary angiogram (CTPA) examinations for suspected PTE disease between April 2021 and May 2021. Clinical data and laboratory data were extracted by trained data collectors, whilst CT images retrieved were analysed by a senior radiologist. Data analysis was performed using Statistical Package for the Social Sciences (SPSS) version 20. RESULTS: We studied 184 COVID-19 patients who were suspected to have PTE disease. CTPA examinations revealed a total of 150 patients (81.5%) suffered from concomitant PTE disease. Among the PTE cohort, the commonest comorbidities were diabetes mellitus (n=78, 52.0%), hypertension (n=66, 44.0%) and dyslipidaemia (n=25, 16.7%). They were generally more ill than the non-PTE cohort as they reported a significantly higher COVID-19 disease category during CTPA examination with p=0.042. Expectedly, their length of both intensive care unit stays (median number of days 8 vs. 3; p=0.021) and hospital stays (median number of days 14.5 vs. 12; p=0.006) were significantly longer. Intriguingly, almost all the subjects had received either therapeutic anticoagulation or thromboprophylactic therapy prior to CTPA examination (n=173, 94.0%). Besides, laboratory data analysis identified a significantly higher peak C-reactive protein (median 124.1 vs. 82.1; p=0.027) and ferritin levels (median 1469 vs. 1229; p=0.024) among them. Evaluation of CT features showed that COVID-19 pneumonia pattern (p<0.001) and pulmonary angiopathy (p<0.001) were significantly more profound among the PTE cohort. To note, the most proximal pulmonary thrombosis was located in the segmental (n=3, 2.0%) and subsegmental pulmonary arteries (n=147, 98.0%). Also, the thrombosis predominantly occurred in bilateral lungs with multilobar involvement (n=95, 63.3%). CONCLUSION: Overall, PTE disease remains prevalent among COVID-19 patients despite timely administration of thromboprophylactic therapy. The presence of hyperinflammatory activities, unique thrombotic locations as well as concurrent pulmonary parenchyma and vasculature aberrations in our PTE cohort implicate immunothrombosis as the principal mechanism of this novel phenomenon. We strongly recommend future researchers to elucidate this important clinical disease among our post- COVID vaccination populations.


Subject(s)
COVID-19 , Lung Diseases , Pulmonary Embolism , Thrombosis , Humans , COVID-19/complications , COVID-19/diagnostic imaging , Tertiary Care Centers , Retrospective Studies , Cross-Sectional Studies , Neovascularization, Pathologic , Pulmonary Circulation , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/etiology , Tomography, X-Ray Computed/methods
5.
BMC Cancer ; 23(1): 185, 2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2270235

ABSTRACT

BACKGROUND: Glioblastoma, the most common primary malignant brain tumour in adults, is a highly vascular tumour characterised by abnormal angiogenesis. Additional mechanisms of tumour vascularisation have also been reported in glioblastoma, including the formation of tumour cell-derived vessels by vasculogenic mimicry (VM) or the transdifferentiation of tumour cells to endothelial cells. VM and endothelial transdifferentiation have frequently been reported as distinct processes, however, the use of both terms to describe a single process of vascularisation also occurs. Some overlapping characteristics have also been reported when identifying each process. We therefore aimed to determine the markers consistently attributed to VM and endothelial transdifferentiation in the glioblastoma literature. METHODS: Ovid MEDLINE and Ovid Embase were searched for studies published between January 1999 and July 2021 that assessed VM or tumour to endothelial transdifferentiation in human glioblastoma. The online systematic review tool Covidence was used for screening and data extraction. Extracted data included type of tumour-derived vasculature reported, methods and techniques used, and markers investigated. Studies were grouped based on type of vasculature reported for further assessment. RESULTS: One hundred and thirteen of the 419 unique records identified were included for analysis. VM was reported in 64/113 studies, while tumour to endothelial transdifferentiation was reported in 16/113 studies. The remaining studies used both terms to describe a single process, did not define the process that occurred, or concluded that neither VM nor endothelial transdifferentiation occurred. Absence of CD34 and/or CD31 in vascular structures was the most common indicator of VM, while expression of CD34 and/or CD31, in addition to various other endothelial, stem cell or tumour cell markers, indicated tumour to endothelial transdifferentiation. CONCLUSION: Cells derived from tumour to endothelial transdifferentiation express typical endothelial markers including CD34 and CD31, while tumour cells contributing to VM lack CD34 and CD31 expression. Additional tumour markers are required to identify transdifferentiation in glioblastoma tissue, and this process requires further characterisation.


Subject(s)
Glioblastoma , Adult , Humans , Glioblastoma/pathology , Endothelial Cells/metabolism , Cell Transdifferentiation , Neovascularization, Pathologic/metabolism , Cell Differentiation , Biomarkers, Tumor
6.
Mol Med ; 28(1): 122, 2022 10 10.
Article in English | MEDLINE | ID: covidwho-2064734

ABSTRACT

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Subject(s)
Biomarkers , COVID-19 , Biomarkers/blood , COVID-19/complications , Case-Control Studies , Endoglin , Female , Humans , Integrin alpha4beta1 , Intercellular Adhesion Molecule-1 , Matrix Metalloproteinase 1 , Neovascularization, Pathologic , Platelet Endothelial Cell Adhesion Molecule-1 , Thrombomodulin , Vascular Cell Adhesion Molecule-1 , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor D , Post-Acute COVID-19 Syndrome
7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2039877

ABSTRACT

Angiogenesis is a multi-step process by which new blood capillaries are formed starting from preexisting functional vessels [...].


Subject(s)
Neovascularization, Pathologic , Neovascularization, Physiologic , Capillaries , Cardiovascular Physiological Phenomena , Humans
8.
HNO ; 70(11): 828-836, 2022 Nov.
Article in German | MEDLINE | ID: covidwho-2014076

ABSTRACT

OBJECTIVE: This study aimed to test the prevalence and evolution of acute olfactory and gustatory functional impairment and their morphologic correlates in COVID-19 patients who require hospitalization due to COVID-19-related respiratory conditions. METHODS: Included were 53 consecutive hospitalized patients (23 males, 30 females; age 42.54 ± 10.95 years) with an RT-PCR-confirmed COVID-19 diagnosis. Patients were examined twice: just after hospital discharge and 4-6 weeks later. Electrogustometric (EGM) thresholds at the tongue area supplied by the chorda tympani, at the soft palate, and in the region of the vallate papillae were recorded bilaterally. Olfaction was examined by Sniffin' sticks (Burghardt GmbH, Wedel, Germany). The patients' nasal and oral mucosa (fungiform papillae, fpap) were examined by contact endoscopy. Findings were compared to those of 53 healthy individuals matched for sex and age (23 males, 30 females; age 42.90 ± 10.64 years). RESULTS: EGM thresholds in patients were significantly higher than those of healthy subjects at both timepoints. EGM thresholds at the second measurement were significantly lower than those at the first measurement. Accordingly, patient-reported gustatory outcomes were improved at the second measurement. The same pattern was found using Sniffin' sticks. Significant alterations in form and vascularization of fPap were detected in patients, especially at the first instance. Interestingly we did not observe any significant changes in the morphology and vascularization of nasal mucosa. CONCLUSION: COVID-19 affects both gustatory and olfactory functions. In parallel, it also affects the structure and vascularization of both nasal and oral mucosa, albeit the nasal mucosa to a much lesser, non-significant extent. Our findings suggest that COVID-19 may cause a mild to profound neuropathy of multiple cranial nerves.


Subject(s)
COVID-19 , Olfaction Disorders , Male , Female , Humans , Adult , Middle Aged , Taste/physiology , Smell , COVID-19 Testing , Chorda Tympani Nerve , Neovascularization, Pathologic/complications , Olfaction Disorders/diagnosis
9.
J Hypertens ; 40(12): 2385-2393, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2001471

ABSTRACT

BACKGROUND: Acute SarsCov2 infection is associated with endothelial dysfunction and 'endothelitis', which might explain systemic microvascular impairment. The presence of endothelial damage may promote vasoconstriction with organ ischemia, inflammation, tissue oedema and a procoagulant state resulting in an increase in the incidence of cardiovascular and cerebrovascular events. Microvascular thrombosis has been demonstrated in postmortem autopsy of COVID-19 patients; however, few data are available about skin capillary alterations in these patients. MATERIALS AND METHODS: We evaluated skin microvascular alteration in 22 patients admitted to our hospital with SarsCov2 infection. Capillary density was evaluated by capillaroscopy in the nailfold and the dorsum of the finger in the acute phase of the disease. Capillaroscopy was repeated after 3 months (recovery phase). In addition, blood chemistry parameters and inflammatory markers were obtained during acute infection and at the recovery after 3 months. RESULTS: Patients with COVID-19 showed skin microvascular complications, such as thrombosis, microhaemorrhages and neoangiogenesis, which were not detected after 3 months from the discharge. A significant reduction of capillary density in the dorsum was observed after 3 months from the acute infection (97.2 ±â€Š5.3 vs. 75.81 ±â€Š3.9 n/mm 2P  < 0.05). A significant inverse correlation between C-reactive protein and capillary density was observed in patients with acute SarsCov2 infection ( r  = 0.44, P  < 0.05). Conversely a direct correlation between capillary density during the acute phase and lymphocyte number was detected ( r  = 0.49, P  < 0.05). CONCLUSION: This is the first in-vivo evidence of skin capillary thrombosis, microhaemorrhages and angiogenesis in patients with acute SarsCov2 infection, which disappeared after 3 months, supporting the presence of endothelial dysfunction and inflammation. Capillary alterations might reflect systemic vascular effects of viral infection.


Subject(s)
COVID-19 , Vascular Diseases , Humans , RNA, Viral , Nails/blood supply , Case-Control Studies , SARS-CoV-2 , Microscopic Angioscopy/methods , Capillaries , Skin/blood supply , Neovascularization, Pathologic , Inflammation
11.
Cold Spring Harb Perspect Med ; 12(10)2022 10 03.
Article in English | MEDLINE | ID: covidwho-1831593

ABSTRACT

COVID-19 has been associated with a range of illness severity-from minimal symptoms to life-threatening multisystem organ failure. The severe forms of COVID-19 appear to be associated with an angiocentric or vascular phase of the disease. In studying autopsy patients succumbing to COVID-19, we found alveolar capillary microthrombi were 9 times more common in COVID-19 than in comparable patients with influenza. Corrosion casting of the COVID-19 microcirculation has revealed microvascular distortion, enhanced bronchial circulation, and striking increases in intussusceptive angiogenesis. In patients with severe COVID-19, endothelial cells commonly demonstrate significant ultrastructural injury. High-resolution imaging suggests that microcirculation perturbations are linked to ischemic changes in microanatomic compartments of the lung (secondary lobules). NanoString profiling of these regions has confirmed a transcriptional signature compatible with microischemia. We conclude that irreversible tissue ischemia provides an explanation for the cystic and fibrotic changes associated with long-haul COVID-19 symptoms.


Subject(s)
COVID-19 , Endothelial Cells , Ischemia , Microcirculation , Neovascularization, Pathologic , COVID-19/complications , COVID-19/pathology , COVID-19/physiopathology , Corrosion Casting , Endothelial Cells/pathology , Endothelial Cells/ultrastructure , Humans , Ischemia/complications , Neovascularization, Pathologic/complications , Post-Acute COVID-19 Syndrome
12.
Sci Rep ; 12(1): 4867, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1758369

ABSTRACT

Leucine-rich α-2-glycoprotein 1 (LRG1) is a secreted glycoprotein that under physiological conditions is produced predominantly by the liver. In disease, its local induction promotes pathogenic neovascularisation while its inhibition leads to reduced dysfunctional angiogenesis. Here we examine the role of interleukin-6 (IL-6) in defective angiogenesis mediated by LRG1. IL-6 treatment induced LRG1 expression in endothelial cells and ex vivo angiogenesis cultures and promoted vascular growth with reduced mural cell coverage. In Lrg1-/- explants, however, IL-6 failed to stimulate angiogenesis and vessels exhibited improved mural cell coverage. IL-6 activated LRG1 transcription through the phosphorylation and binding of STAT3 to a conserved consensus site in the LRG1 promoter, the deletion of which abolished activation. Blocking IL-6 signalling in human lung endothelial cells, using the anti-IL6 receptor antibody Tocilizumab, significantly reduced LRG1 expression. Our data demonstrate that IL-6, through STAT3 phosphorylation, activates LRG1 transcription resulting in vascular destabilisation. This observation is especially timely in light of the potential role of IL-6 in COVID-19 patients with severe pulmonary microvascular complications, where targeting IL-6 has been beneficial. However, our data suggest that a therapy directed towards blocking the downstream angiopathic effector molecule LRG1 may be of greater utility.


Subject(s)
Glycoproteins , Interleukin-6 , Neovascularization, Pathologic , STAT3 Transcription Factor , COVID-19 , Endothelial Cells/metabolism , Glycoproteins/metabolism , Humans , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , STAT3 Transcription Factor/metabolism
13.
Front Immunol ; 13: 821681, 2022.
Article in English | MEDLINE | ID: covidwho-1708117

ABSTRACT

Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy.


Subject(s)
Chemokine CXCL1/metabolism , Neovascularization, Pathologic/pathology , Peritoneal Dialysis/methods , Peritoneum/blood supply , Renal Replacement Therapy/methods , COVID-19/pathology , Cells, Cultured , Child , Child, Preschool , Epithelium/metabolism , Humans , Infant , Interleukin-17/metabolism , Kidney Failure, Chronic/therapy , Peritoneum/pathology , Vascular Endothelial Growth Factor A/metabolism , Vascular Remodeling/physiology
14.
Pharmacol Ther ; 234: 108049, 2022 06.
Article in English | MEDLINE | ID: covidwho-1536989

ABSTRACT

Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.


Subject(s)
COVID-19 , Epoxy Compounds , Arachidonic Acid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids , Epoxy Compounds/metabolism , Epoxy Compounds/pharmacology , Fatty Acids , Fatty Acids, Unsaturated/metabolism , Humans , Neovascularization, Pathologic
15.
Bioconjug Chem ; 32(11): 2420-2431, 2021 11 17.
Article in English | MEDLINE | ID: covidwho-1526037

ABSTRACT

The heparan sulfate (HS) mimetic pixatimod (PG545) is a highly potent inhibitor of angiogenesis, tumor growth, and metastasis currently in clinical trials for cancer. PG545 has also demonstrated potent antiviral activity against numerous HS-dependent viruses, including SARS-CoV-2, and shows promise as an antiviral drug for the treatment of COVID-19. Structurally, PG545 consists of a fully sulfated tetrasaccharide conjugated to the steroid 5α-cholestan-3ß-ol. The reported synthesis of PG545 suffers from a low yield and poor selectivity in the critical glycosylation step. Given its clinical importance, new efficient routes for the synthesis of PG545 and analogues were developed. Particular attention was given to improving the key glycosylation step by using more stable protecting groups and optimized glycosyl donors.


Subject(s)
COVID-19 , Angiogenesis Inhibitors , Cell Line, Tumor , Heparitin Sulfate , Humans , Neovascularization, Pathologic
16.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: covidwho-1390655

ABSTRACT

The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.


Subject(s)
Neoplasms , Thrombospondin 1/physiology , Tumor Microenvironment/physiology , Animals , Cell Adhesion , Cell Movement , Humans , Integrins/metabolism , Mice , Neoplasms/blood supply , Neoplasms/immunology , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/genetics , T-Lymphocytes/immunology , Thrombospondin 1/genetics , Thrombospondin 1/metabolism
17.
Cells ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1295777

ABSTRACT

Integrins belong to a group of cell adhesion molecules (CAMs) which is a large group of membrane-bound proteins. They are responsible for cell attachment to the extracellular matrix (ECM) and signal transduction from the ECM to the cells. Integrins take part in many other biological activities, such as extravasation, cell-to-cell adhesion, migration, cytokine activation and release, and act as receptors for some viruses, including severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). They play a pivotal role in cell proliferation, migration, apoptosis, tissue repair and are involved in the processes that are crucial to infection, inflammation and angiogenesis. Integrins have an important part in normal development and tissue homeostasis, and also in the development of pathological processes in the eye. This review presents the available evidence from human and animal research into integrin structure, classification, function and their role in inflammation, infection and angiogenesis in ocular diseases. Integrin receptors and ligands are clinically interesting and may be promising as new therapeutic targets in the treatment of some eye disorders.


Subject(s)
Eye Diseases/metabolism , Inflammation/metabolism , Integrins/metabolism , Neovascularization, Pathologic/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , Cell Adhesion , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Eye Diseases/pathology , Humans , Inflammation/pathology , Integrins/analysis , Neovascularization, Pathologic/pathology , SARS-CoV-2/metabolism
18.
Angiogenesis ; 24(4): 755-788, 2021 11.
Article in English | MEDLINE | ID: covidwho-1286153

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Subject(s)
COVID-19/metabolism , Myelopoiesis , Neovascularization, Pathologic/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/metabolism , Thrombosis/metabolism , COVID-19/pathology , COVID-19/therapy , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Fibrin Fibrinogen Degradation Products/metabolism , Fibroblast Growth Factor 2/metabolism , Humans , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Membrane Proteins/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/therapy , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Thrombosis/pathology , Thrombosis/therapy , Thrombosis/virology , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism
19.
Inflamm Res ; 70(7): 749-752, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1281256

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic is still a world-class challenge. Inflammation, especially its severe form with excess release of pro-inflammatory cytokines (cytokine storm) which is a life-threatening condition, is among the most important suspects involved in COVID-19 pathogenesis. It has been shown that cytokine storm could cause notable morbidities such as acute respiratory distress syndrome (ARDS) which leads to hypoxia which is significantly associated with mortality of patients with COVID-19. Hypoxia-inducible factor 1α (HIF-1α) which activates following ARDS-induced hypoxia plays a crucial role in pathogenesis of cytokine storm. The expression of tumor necrosis factor α (TNF-α), interleukin 1 ß (IL-1ß), and IL-6 which are key elements of cytokine storm are by nuclear factor κß (NFκB). Interestingly, during the hypoxia, HIF-1α activates NFκB to induce expression of pro-angiogenic and pro-inflammatory factors. These released factors starts a autocrine/paracrine loop and causes deterioration of their etiological pathways of expression: cytokine storm and ARDS. To sum up, it seems HIF-1α is an important target to hit to ameliorate the mentioned pathways. Herein, we suggest perfluorocarbons (PFCs) which are among the organofluorine compounds as a possible co-treatment to reduce hypoxemia and then hypoxia. These substances are known for their high gas solving potential that make them able to be used as a synthetic artificial blood product. Due to the potential of PFCs to affect the fountain of important physiopathological pathway such as inflammation a hypoxia through affecting NFκB, they could be considered as multi-target co-treatment for ARD individuals with COVID-19. It is highly suggested to evaluate this hypothesis in following researches.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Fluorocarbons/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/etiology , Animals , Cytokines/biosynthesis , Humans , Hypoxia/drug therapy , Hypoxia/etiology , NF-kappa B/drug effects , Protective Agents/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology
20.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L358-L376, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1280497

ABSTRACT

Capillary endothelial cells possess a specialized metabolism necessary to adapt to the unique alveolar-capillary environment. Here, we highlight how endothelial metabolism preserves the integrity of the pulmonary circulation by controlling vascular permeability, defending against oxidative stress, facilitating rapid migration and angiogenesis in response to injury, and regulating the epigenetic landscape of endothelial cells. Recent reports on single-cell RNA-sequencing reveal subpopulations of pulmonary capillary endothelial cells with distinctive reparative capacities, which potentially offer new insight into their metabolic signature. Lastly, we discuss broad implications of pulmonary vascular metabolism on acute respiratory distress syndrome, touching on emerging findings of endotheliitis in coronavirus disease 2019 (COVID-19) lungs.


Subject(s)
COVID-19/complications , Endothelium, Vascular/metabolism , Neovascularization, Pathologic/pathology , Pulmonary Circulation , Respiratory Distress Syndrome/epidemiology , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19/virology , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , Humans , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/virology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL